Plant chemistry in a freshwater wetland experiencing salt water intrusion

Kristine N. Hopfensperger¹ & Amy J. Burgin² Northern Kentucky University ²University of Nebraska-Lincoln

Introduction to Timberlake

My Introduction to Timberlake

Introduction to Timberlake

Timberlake Vegetation

Variety of wetland habitats

Stunted cypress growth

Study Questions

Q1: Do distinct plant community assemblages exist and align along physical gradients?

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

California Agriculture 57(2):55-59. DOI: 10.3733/ca.v057n02p55. April-June 2003.

Study Questions

Q1: Do distinct plant community assemblages exist and align along physical gradients?

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

Q3: Do correlations exist between plant tissue chemistry and the physical and chemical gradients on site?

Sampling – Plant Community

- 91, 1-m² plots
- 32 different locations

- % cover estimates
- ID genus & species
 Data analysis: NMS, CCA; PC-Ord

Soil Sampling & Lab Analyses

- 22 plots (3 no roots)
- **Transects 1, 1a, & 6**
- 8 wet, 6 intermediate, 5 dry

Data analysis: **ANOVAs & Reg; SPSS**

Lab Analyses

- Fe root plaque (Neubauer et al. 2007)
- **Dominant spp** root & tissue Fe
- **Dominant spp** tissue C/N

June 2011 Plant Community

Q1: Do distinct plant community assemblages exist?

June 2011 Plant Community

Q1: Do distinct plant community assemblages align along physical gradients?

* Structural = Sedge/Rush/Grass = <u>SRG</u>

Community	Moisture	Life Form
Najas & SAV	Wet	Submerged
<i>T. latifolia,</i> etc.	Wet/ Intermediate	Structural*/ Submerged
<i>J. effusus</i> w/ diversity	Intermediate/ Wet	Structural/ Submerged
J. effusus & Typha	Intermediate	Structural
Scirpus cyperinus	Intermediate	Structural
Sol. fistulosa & J. effusus	Intermediate/ Dry	Broad-leaved/ Structural
Sol. microcephala	Dry	Broad-leaved
Sol. canadensis	Dry	Broad-leaved

Plant Community Characteristics

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

Structural species deliver more oxygen to rhizosphere

Plant Community Characteristics

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

Plant Community Characteristics

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

Chemistry of Site

Saltwater intrusion

Nutrient runoff 0-5 cm 2 **Average Fe Reduction** Reduction Rate (µmol C/ g dry soil/ day) 10-15 cm 1 0 30 0-5 cm **Average Sulfate Reduction** 10-15 cm 20 10 0 40 ■ 0-5 cm **Average Methanogenesis** 30 10-15 cm 20 **Burgin's** 10 Lab, Slurry 0 Data 101 105b 106 107 108 1a01 1a02 206 601 602

Plant Communities & Soil Chemistry

Q3: Do correlations exist between plant tissue chemistry and the physical and chemical gradients on site?

Plant Communities & Soil Chemistry

Q3: Do correlations exist between plant tissue chemistry and the physical and chemical gradients on site?

Juncus effusus

Q3: Do correlations exist between plant tissue chemistry and the physical and chemical gradients on site?

Dominant species changes along chemical gradients

Root Fe plaque (ppm) 10.3 ± 2.9 > 4.8 ± 4.7

Conclusion

Q1: Do distinct plant community assemblages exist & align along physical gradients?

Yes, Timberlake has a variety of plant communities that align along the moisture gradient

Q2: Do dominant plant species differ in their influence on oxygen in the rhizosphere?

Yes, SRGs had higher Fe plaque on roots and Fe in root tissues Removing Fe from soil may allow for more sulfate reduction

Q3: Do correlations exist between plant tissue chemistry and the physical and chemical gradients on site? Yes, sulfate and iron reduction were correlated with plant communities & dominant J. effusus tissue/root chemistry changed along site gradients

Next Steps

- 1. Increase sample number for plant chemistry data, specifically dominant species across site
- 2. Collect more SAV tissue samples throughout the site's saltwater intrusion gradient
- 3. Reinvestigate Fe plaque on roots with actual moisture treatments (not going from map)
- 4. Study amount of aerenchymous tissue in dominant species
- 5. Yearly sampling of plant communities to examine spatial and temporal dynamics of system (interesting findings at DM in VA)

Acknowledgements

NKU undergraduates Cassi Kowal Sarah Haley Shaw

Amy Burgin's Lab Valarie Schoepfer Sarah Harvey

NKU Biology Dept. Richard Durtsche Richard Boyce Emily Bernhardt & Lab Ashley Helton Anna Fedders Ben Riegel Funding NSF ROA #: DEB-1021039 & DEB-1216916

